The Secret Ingredient to Sports Success: An Interview With David Epstein On The Sports Gene

The Sports Gene
Maybe its not all about practice.  Since the youth sports world fell in love with the romantic notion that 10,000 hours of structured practice is the magic ingredient to world-class mastery in just about any field, especially sports, we've forgotten or ignored that our genetic endowment may still have something to do with the outcome.  Just watch this video of a young Lionel Messi, who was probably still working towards his 10,000 hour total at the time.  He clearly has something else, something that was already there at age 5 and something that the other kids didn't have.

David Epstein, senior writer at Sports Illustrated, has been on a search for that extra something.  In his new book, The Sports Gene, Epstein launched himself directly into the nature vs. nurture, genes vs. practice and natural vs. self-made debates about athletic greatness.


I recently had a chance to chat with David about his book and found out that there is a complex, misunderstood mixture of variables in the magic formula:


David, congratulations on your new book!  One of my all-time favorite SI articles of yours is the 2010 piece “Sports Genes”.  At the time, you opened many eyes on the influence of genetics on athletic performance.  Is it safe to say that the science and our understanding of it has come a long way in the last three years?

David Epstein
David Epstein: I appreciate that! I think it safe to say that the science has come a very long way in the last three years. At the same time, the studies of genes related to sports performance is still hampered by certain problems. A decade ago, scientists hoped that genetics might be simple; that single traits, like, say, height, might be attributable to a single gene or a small number of genes. But now it’s clear that most traits—and certainly those as complex as athleticism—can involve large numbers of genes, each with a small effect. That can make things particularly tricky for studying elite athletes, because there aren’t very many elite athletes in the world, so studies are often too small to detect the effects of relevant genes. 

Still, using certain innovative methods, like those described in chapter five of my book, scientists are pinpointing some of the genetic influences on an individual’s ability to adapt to a training regimen. And that now looks to be a key component of “talent,” not simply some skill that manifests prior to training, but the very biological setup that makes one athlete better at adapting to a particular training plan. In recent years, both with respect to endurance and strength training, the science has increasingly shown that genes mediate the ability to “respond” to training, and it appears that work will continue to be bolstered. People often say “I’m not very talented in this or that area,” but the genetic work is increasingly showing that we can’t necessarily know if we have talent before we try training.

In the book, you tell the story of Dan McLaughlin, an amateur golfer, who has put his life on hold while he accumulates the infamous 10,000 hours of deliberate practice towards his goal of playing on the PGA Tour.  You document how genetics can offer exclusive physical advantages for sprinters, swimmers or even baseball batters.  However, in sports like golf, dominated more by mental skill than brute physical abilities, does genetics still play a role or is it all about practice?

DE: That’s a great question. For starters, there is less scientific evidence regarding genes that influence skill in very technical sports, like golf, but that is partly because those skills are difficult to study. We have enough trouble finding genes for simple traits, like height, and physiologists don’t even understand everything that makes a great golfer, much less the genes that undergird the particular physiological traits. As Sir Roger Bannister once said: “The human body is centuries in advance of the physiologist, and can perform an integration of heart, lungs, and muscles which is too complex for the scientist to analyze.” No where is this complexity more difficult for scientists to link to specific traits than in sports based on specialized skills. So one reason there’s more known about genes—or innate physiological traits—that influence the more raw athletic skills is simply because scientists more often choose to study athletes engaged in more “raw” sports. The idea is it will be easier to find the biological influences. 

That said, there are mounds of studies that show that when individuals practice motor skills, differences in the rate of progress become apparent in all but extremely simple skills. In some studies, the more complex the skill, the greater the differences between individuals will become as they practice. In other words, there are differences in “trainability.” Which genes are at play here is largely a mystery, but that doesn’t mean they don’t exist. Remember, we don’t know many of the genes that influence height, and yet from studies of families and large populations, we know quite well that differences in the heights of adults in any given population are generally at least 80% inherited. 

To use an example relevant to some of the writing in my book, left-handed people are highly overrepresented among chess masters. We don’t know what the “left handed genes” are, but we know there is a genetic component. Men are about twice as likely to be left handed as women, for example. So it would seem as if certain genes for left-handedness, which of course means brains that influence motor control in the brain, interact with the learning of a skill like chess. As a related aside, Belgian scientist Debbie Van Beisen has shown that competitive table tennis players with mental handicaps fail to learn the anticipatory cues required to return shots as quickly as similarly experienced table tennis players who do not have mental handicaps.

Additionally (and I actually had to trim much of this from the book) there is some interesting work implicating specific genes in motor skill learning. Here’s a snippet I had to cut from the book, as my first draft was WAY over printable length:

“The level of BDNF is elevated in the brain’s motor cortex when people learn a motor skill, and BDNF is one of the neural signals that coordinates the reorganization of the brain when skills are learned. And a 2006 study found that, when people practiced motor skills with their right hand—like putting small pegs in holes as quickly as possible—the area of the activated brain representing the right hand, the neural “motor map,” increased in size with practice only in those people who did not have a met version of the BDNF gene. All of the subjects started with similar sized motor maps, but only the non-met carriers experienced a change with practice.

And in 2010 a group of scientists led by neurologist Steven C. Cramer set out explicitly to test whether the BDNF gene impacts the kind of memory involved in motor skill learning, and their findings suggest that it does. In that study, people drove a car along a digital track 15 separate times in one day. All of the drivers improved as they learned the course, but the met carriers did not improve as much. And when all the drivers were asked back four days hence and made to drive the course once more, the met carriers made more mistakes. When scientists used fMRI to look at the drivers’ brains as they practiced simple motor skills, they found different patterns of activation in the people who had a met version of the BDNF gene.”


Recently, Atlas Sports Genetics has caused a stir in youth sports by offering parents a test for their kids to look for a certain variation of the ACTN3 gene, otherwise known as the “speed gene.”  You mention that this test is only useful to know if your youngster is the next Usain Bolt or Carmelita Jeter, something parents probably already know.  What’s next on the horizon for genetic testing for young athletes?  Are there genes or combinations of genes for traits like reaction time, balance or coordination?

DE: First, just to clarify, the ACTN3 gene is only really useful for telling you that your youngster will not be the next Bolt—if they don’t have the so-called “right” version for sprinting. But it doesn’t even do a very specific job of that, since most people have the “right” version. And, let’s face it, you can take your kid to the playground and have him race the other kids and you’ll get a better idea of his chances of becoming the next Bolt than you would with a genetic test. 

As far as the next frontier of genetic testing for young athletes, I think it will undoubtedly be “injury genes,” before performance genes, and we’re already actually starting to see a bit of that. I spent some time with Brandon Colby, an L.A.-based physician who treats retired NFL players, and—at the behest of parents—he already tests some teenagers for their version of the ApoE gene. As I write in the book, one version of this gene makes an individual more susceptible to brain damage from concussions or the kind of hits to the head to occur on every football play. There are other gene variants that put some athletes at risk of dropping dead on the field, and others that appear to increase the risk of an injury like a ruptured Achilles tendon or torn ACL. 

As I discuss in the book, some of these genes are actually now being used for practical purposes, and I think that we’ll see that increase. As for reaction time, I don’t think we’ll see much there, given that, as I explain in the first chapter, the simple reaction times—the time it takes one to hit a button in response to a light—of elite athletes are no different than those of teachers, lawyers, or college kids. The skills that allow hitters to intercept 100 mph fastballs are learned perceptual skills, not innate reaction abilities. And even if simple reaction time was important, it would be way easier to measure directly—by giving someone a reaction time test—than indirectly by looking at genes.

Here at Sports Are 80 Percent Mental, we talk a lot about the brain’s role in playing sports.  From vision to perception to decision making to emotions, the brain plays a critical role in sports success.  What have we learned about neurogenetics that can influence an athlete’s performance from a cognitive perspective?

DE: One of the most surprising things I learned in my reporting was that scientists know quite well that not only does the dopamine system in the brain—which is involved in the sense of pleasure and reward—respond to physical activity, but it can also drive physical activity. 

One of the scientists I quote in the book suggests that this may be why very active children who take Ritalin, which alters dopamine levels, suddenly have less drive to move around. That’s precisely what he sees when he gives Ritalin to the rodents he breeds for high voluntary running, anyway. And it appears that different versions of genes involved in the dopamine system influence the drive to be active. (Interestingly, native populations that are nomadic and that migrate long distances tend to have a higher prevalence of a particular dopamine receptor gene; the same one that predisposes people to ADHD. I discuss in the book the possible link.) 

One of my takeaways from the research I did for the book was that some traits we think are innate, like the bullet-fast reactions of a Major League hitter, are not, and others that we often portray as entirely voluntary—like the compulsive drive to train—can have important genetic components. Additionally, the section of the book that deals with pain in sports, and discusses the genetics of pain, gets into the fact that the circuitry of pain is shared with circuitry of emotion. (Morphine, after all, doesn’t so much dull pain as make one less upset about it.) And the first genes that are emerging that might allow athletes to deal calmly with pain on the field—like, perhaps, the COMT “warrior/worrier” gene—are genes involved in the metabolism of neurotransmitters in the brain. And, of course, as I mentioned in my longwinded answer to the second question, there are genes that appear to influence motor learning.

David, you were a competitive runner in your college days at Columbia and I understand you still run quite a bit.  Has the research for this book given you any insight or tips that you or other weekend athletes can use?

DE: Indeed I was. I was an 800-meter runner. I still love running, but I’d call what I do now “jogging”! But working on this book gave me certain broad insights that I apply to my own training. In 2007, the prestigious peer-reviewed journal Science listed “human genetic variation” as the breakthrough of the year; the revelation of how truly different we are from one another. And, as J.M. Tanner, the eminent growth expert (and world class hurdler) once put it: “Everyone has a different genotype. Therefore, for optimal development…everyone should have a different environment.” No two people respond to a Tylenol the same way because of their distinct biology, and no two people respond to the medicine of exercise the same way either. 

When I was in college, I had better endurance—at all distances—on a training plan of 35 miles per week that included carefully selected intervals, than I had previously on 85 miles per week of cookie-cutter distance training. If you aren’t taking a scientific approach to your training—and this doesn’t mean cutting edge science, but just paying attention to what you best respond to—then you aren’t getting everything out of yourself. To use track, because it’s just an easy example, in every training group from high school to the pros, you have groups of runners doing identical workouts, and yet never crossing the line at the same time in a race. 

Genetic science is showing us that the most important kind of “talent” isn’t some physical trait that preexists training, but rather that ability to physically adapt to training. And studies I describe in the book make it quite clear that particular genes mediate an individual’s ability to benefit from training such that two people can have drastically different results from the same training plan. 

So if you feel like, for some reason, you aren’t getting results on par with your training partner, you might be right. And the problem might be you, in the very deepest sense. So don’t be afraid to try something different. Several of the athletes I write about in the book weren’t afraid to jump into entirely new activities or training plans, and some came out world champions.

Thank you, David and good luck with the book!


Would You Rather Be A Guitar Hero Or A Golf Legend?

Gary Marcus
Dan McLaughlin
Despite being a well-respected cognitive psychology professor at New York University, Gary Marcus had a secret ambition; to shred amazing riffs that would make Eric Clapton envious.  The fact that he had been gently told as a child he had no sense of rhythm or tone did not discourage his dream.  With a one year sabbatical from NYU available, he turned himself into a lab experiment of how to teach a middle-aged dog new “licks”.

At about the same time, Dan McLaughlin was growing restless with his career as a commercial photographer in Portland.  However, life as a professional golfer seemed to be the dream destination if only he could find the right path to get there.  

On opposite ends of the country, two guys pursuing different goals but with the same underlying principle; devote a large chunk of dedicated time breaking down and learning complicated skills with the help of experienced coaches.


They had both heard of a theory out there by Florida State psychology professor K. Anders Ericsson that claimed the best performers in a variety of fields had accumulated around 10,000 hours of specific, deliberate practice before they became world-class.  Some took more hours, some less, but on average it provided a rough target to shoot for before expecting magic with a Stratocaster or a five iron.
While Marcus’ window of full-time learning was limited to one year, McLaughlin estimated he could reach 10,000 hours of structured golf practice in six years or around 2016.  These timeframes seemed to match their respective goals; McLaughlin’s ultimate measure of success would be to actually earn a player’s card on the PGA Tour, while Marcus just wanted to launch a side passion, maybe start a band.

Given his scientific background, Professor Marcus was able to combine his knowledge of learning theory with his quest.  In fact, he documented the entire adventure in his 2012 book, Guitar Zero, which offers a mix of cognitive science, music theory and guitar stories. McLaughlin tracks his progress at his web site, The Dan Plan, (and soon in an upcoming book), where he provides daily updates including the countdown to 10,000 hours (only 6,220 to go!) See their video overviews below.

I recently caught up with both men to compare their methods and their progress:

Gary, are you familiar with Dan McLaughlin’s quest to teach himself golf in 10,000 hours?

Gary Marcus: “I've been meaning to read more about his story; I think he's been more dedicated about logging the specifics of his practice than I have been. But the number of 10,000 hours itself is pretty crude; there are well-documented cases of people becoming chess masters in barely more than 3,000 hours, and others take 25,000. Some depends on genes, but it also depends on how you practice.”

Dan, what about you; did you know of Gary’s journey to be a guitar god?

Dan McLaughlin: “I am familiar with Gary's book although have not personally read it. The writer that I am working with for The Dan Plan's book read Guitar Zero as part of his research and has told me some aspects of his story.  A similarity could be seen in his full-on approach to learning, and perhaps the biggest difference is the time frame.”  

How related is learning the guitar with, say, learning to golf?

Gary: “There are some obvious differences (e.g. great weight on muscle development in golf), but both are complex skills that require extensive neural rewiring. Guitar has its own kind of athleticism, and arguably places greater demands on memory, but in both cases precision is paramount, and one must integrate a great deal of perceptual input in order to perform appropriate motor actions. In both cases, self-discipline is paramount, and some kind of coaching is critical for anyone wishing to be a top performer. Of course, the outfits are better in rock and roll...”

Has your learning progress in golf been pretty linear with gradual improvement every month, or does it go in bursts with plateaus where you stay the same for awhile? 

Dan: “Learning, from what I have experienced, comes in chunks.  This is why putting in time is so crucial, because you never know when the next big learning bump will occur.  Sometimes days will pass where it seems like nothing is being achieved then that will be followed by a period of great momentum.  In the big picture it may be possible to see that learning evens out over time, but when you are in the thick of it the biggest moves always come in bursts.”

Have you had periods where you've gone backwards in your progress?  How do you handle that emotionally?

Dan: “Every time you stretch out your neck to improve the first step is in reverse.  I have yet to make a large change in my swing and immediately see a positive outcome. Rather, when you are in transition, it at first creates errors which are then followed by a slow improvement in consistency and eventually the new move is grooved and the positive results are reaped.  Emotionally, you have to allow for building periods where you know that you will be moving in reverse for a while before you get back to your level and break through to the next.”

Gary: “Learning to cope with failure and to channel into improved performance is an art that any human being ought to develop, no matter what they are learning. Some of that is about setting proper goals, and appreciating progress.”

Both music and golf have “rules” or foundational elements that need to be learned.  How do our brains wire themselves to follow these principles?

Gary: “Music is a special case in that there is a lot of formal knowledge (about music theory) that can be taught, both demand a lot of unconscious knowledge, too. I'm not a golfer, but I wonder whether there are (aside from the formal rules of the game) mathematical principles in golf that are analogous to the principles of harmony and voice leading. Then again, lots of people make beautiful music without any formal understanding of those  rules. (And as in any creative endeavor, the best artists have a good sense of when it is effective to break the rules.)”

In Guitar Zero, you explain that learning a new skill is often spread across multiple areas of the brain. Yet sometimes we hear that specific brain regions are responsible for specific tasks.  Can you help us understand the difference?

Gary: “I think of the brain as being made up of many subcomponents, whereas I think of most things that we know as depending on choosing that right combination of those components for a particular job. Individual bits of brain tissue often do pretty precise things, but do those same things in the service of many different computations.  So-called “muscle memory” is really in the brain, distributed across areas such as somatosensory cortex and the basal ganglia; you don't learn anything unless you've rewired the brain.”

Can there be a transference of guitar skill to a related task like playing a violin?

Gary: “For sure, though I am told that the bow is a whole other dimension. But lots of things about rhythm and pitch and motion and perception transfer reasonably well. Look at people like Prince, Stevie Wonder, Paul McCartney, etc who play loads of instruments well.”

Do you think a person’s genes play a role in being a talented performer?  Are some people just "born with it"?  

Dan: “If your genetics are somewhere in the norm of the bell curve I do not think that genes play a role in being a great golfer.  There are certain limiting factors such as bone structure limiting range of motion or fused joints, but outside of the extremes we are all capable of being great at this sport.  If there was a genetic advantage then there would be a prototype golfer and from what I see golf champions come in all shapes and sizes.”

Gary: You have to have the genes to be Jimi Hendrix, but all you have to do enjoy yourself is to be sufficiently dedicated, and to allow yourself to enjoy the journey, rather than fixating on the destination.

Gary and Dan, thanks so much for your time and we hope to see you on stage and on the leaderboard!


Join Axon Sports on Twitter and Facebook.