Running To The Right Beat


With the Fall marathon season in full swing, thousands of runners are gearing up for the big day.  Just as important as their broken-in shoes and heart rate monitor is their source of motivation, inspiration and distraction: their tunes.

Running with music has become so common that the two biggest names in both industries, Nike and Apple, have been joined at the hip with the Nike + iPod combination. So, what is it about music and running, or any exercise, that feels so right?

Several recent studies try to chase down the connection between our ears and our feet.

For the last 20 years, Costas Karageorghis, a sports psychologist at Britain’s Brunel University, has been setting the research pace for understanding our need to groove and move.

In addition to his lab research, Karageorghis has helped create a half marathon in London that tries to find the perfect music mix of live bands based on his research of human reaction to rhythm. The second annual "Run to the Beat" event was held a few weeks ago with 9,000 laboratory rats, er, runners either enjoying the live music or listening to their own mix of tunes on their MP3.  Karageorghis even offered a scientific selection of songs based on his findings.

According to Kargeorghis, there are four factors that contribute to a song's motivational qualities: rhythm response, musicality, cultural impact and association.

The first two are known as "internal" factors as they relate to the music's structure while the second two are "external" factors that reflect how we interpret the music. Rhythm response is tied to the beats per minute (bpm) of the song and how well it matches either the cadence or the heartbeat of the runner. A song's structure such as its melody and harmony contribute to its musicality. The external factors consider our musical background and the preferences we have for a certain genre of music and what we have learned to associate with certain songs and artists.

Picking the right music can have several benefits.

Syncing beats per minute with an exercise pace increases your efficiency. In a recent study, subjects who cycled in time to music found that they required 7 percent less oxygen to do the same work when compared to music playing in the background. Music can also help block out the little voice in your brain telling you its time to quit. Research shows that this dissociation effect results in a 10 percent reduction in perceived effort during treadmill running at a moderate intensity.

In the current study, published in the Journal of Sport and Exercise Psychology, 30 subjects synchronised their pace to the tempo of the music which was 125 bpm. Before the experiment, a pool of music was rated using a questionnaire tool (the Brunel Music Rating Inventory) which then selected the most motivational pieces for the treadmill test. The subjects were given a choice of either pop or rock music.

When compared to a no-music control, the motivational synchronised music led to a 15 percent improvement in endurance.

"The synchronous application of music resulted in much higher endurance while the motivational qualities of the music impacted significantly on the interpretation of fatigue symptoms right up to the point of voluntary exhaustion," Karageorghis reported.

Matching the beats per minute of our music with our exercise heart rate also takes an interesting non-linear path, according to research.

Karageorghis found that when our hearts are performing at between 30 and 70 percent of maximum, we prefer a somewhat linear increase from 90 to 120 bpm. However, when we reach our anaerobic threshold between 70 and 80 percent of maximum, we prefer a jump in rhythm from 120 to 150 bpm. Above 80 percent of maximum heart rate, a plateau is reached where even faster music is not preferred.

Another new study by researchers from Liverpool John Moores University, and detailed online in the Scandinavian Journal of Medicine & Science in Sports, looked at the tempo angle differently. Instead of a mix of different songs at different tempos, they asked a group of cyclists to pedal to the same song over three different trials.

What the subjects did not know is that the researchers first played the song at normal speed, but then increased or decreased the speed of the same song by 10 percent. The small change was not enough to be noticed, but it did have an effect on performance.

Speeding up the music program increased distance covered/unit time, power and pedal cadence by 2.1 percent, 3.5 percent and 0.7 percent, respectively. Slowing the program produced falls of 3.8 percent, 9.8 percent and 5.9 percent. The researchers concluded that we increase or decrease our work effort and pace to match the tempo of our music.

Finding the right beat has now become even easier with a couple of cool software plug-in tools, Cadence or Tangerine.  Cadence is an iPhone/iPod Touch app, while Tangerine is Mac only. By integrating with your iTunes library, they can build a custom playlist based on the BPM range you provide, while arranging the songs in several different tempo shapes including warm-ups and warm-downs. With the right mix, your brain and feet will be in perfect harmony.

Your Heart Can Warn You Of Future Attacks

Many people exercise to improve the health of their hearts. Now, researchers have found a link between your heart rate just before and during exercise and your chances of a future heart attack.
Just the thought of exercise raises your heart rate. The new study shows that how much it goes up is related to the odds of you eventually dying of a heart attack.

More than 300,000 people die each year from sudden cardiac arrest in the U.S., often with no known risk factors. Being able to find early warning signs has been the goal of researchers like Professor Xavier Jouven, of the Hopital Européen Georges Pompidou in Paris.

Jouven's team has been examining data from a study of 7,746 French men employed by the Paris Civil Service and given health examinations between 1967-1972, including exercise tests, electrocardiograms and heart rate measurements. Over an average 23-year follow-up, 83 eventually died of heart attacks, also known as sudden cardiac death (SCD).

In 2005, Jouven's team first showed that how a heart behaves before, during and after exercise could predict future problems. The risk of a future heart attack was about four times higher than normal in men whose resting hearts beat faster than 75 beats per minute (bpm) or did not speed up by more than 89 beats during exercise. Likewise, heart attacks were twice as likely in men whose heart rates didn't slow down more than 25 beats in the first minute after exercise stopped.

Just a thought
In the latest study, published last week in the European Heart Journal, the French researchers found another interesting clue in the same data set. Not only was the resting heart rate of each person taken, but also another reading right before they were to start a strenuous exercise bike test. This rate is affected by what they called "mild mental stress." It measures the body's physiological anticipation of exercise.

Think of this type of stress as the brain's warning to the body that some difficult, sweaty work is about to begin. It is normal for this rate to be slightly higher than the resting rate, but for some it is significantly higher.

The men who had the highest increase in heart rate during this period (increasing by more than 12 beats a minute) had twice the risk of eventual future sudden cardiac death compared to men who had the lowest increase in heart rate (an increase of less than four beats a minute).

So, the high-risk heart overreacts to the anticipation of exercise, and then does not respond to the full extent needed during exercise. Afterwards, it does not regulate itself down fast enough.

What's going on
Jouven hypothesized that the autonomic nervous system (ANS), the body's internal control governor, must be out of whack.

The ANS has two parts, the sympathetic and the parasympathetic. Joeven suggests we think of the sympathetic system as the accelerator that turns up our response to exercise by increasing our heart rate. Putting the brakes on this acceleration are the vagus nerves, part of the parasympathetic system, preventing our heart from running out of control.

"There is a balance between the accelerator (sympathetic activation) and the brake (vagus nerve activation)," Jouven explains. "During an ischemic episode, when blood flow to the heart is reduced, sympathetic activation occurs to counteract it. However, if there is no protection by the vagal tone (the brake), the activation can become uncontrolled and then it becomes dangerous."

Finding this connection between heart rate and future heart problems is encouraging for future research, according to Jouven.

"These findings may carry significant clinical implications," he said. "Few measurements in medicine are as inexpensive and as easy to obtain in large general populations as to measure the heart rate difference between resting and being ready to perform an exercise test. The results will contribute towards a better understanding of the mechanisms of cardiac death."

Please visit my other sports science articles at Livescience.com.